Search results

Search for "cobalt nanoparticles" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • . Consequently, the electrocatalysts accelerate the reaction kinetics, improving the electrochemical performance of Na–S batteries. Different compounds were shown to have this property such as cobalt nanoparticles [34][45][46], iron nanoclusters [47] and iron disulfide [48], gold nanodots [49], nickel sulfide
  • nanocrystals [50], molybdenum trioxide [21], manganese dioxide [51], and vanadium carbide nanoparticles [12]. For instance, the electrocatalytic performance of cobalt nanoparticles (CoNPs) was reported by Zhang et al. [45] who studied a cathode comprising hollow carbon nanospheres. The cathode displayed a
PDF
Album
Review
Published 09 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • successful use in biological milieus. Recent studies indicated that the green synthesis of nanoparticles, such as zinc oxide nanoparticles and bimetallic copper–silver and nickel–cobalt nanoparticles, is preferred for catalytic, antibacterial, and therapeutic applications [12][13][14]. Several other
PDF
Album
Review
Published 18 Aug 2021

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • minimally absorbed by tissue chromophores and water [24]. Therefore, tunable plasmonic nanoparticles that can respond to NIR light and can be manipulated with a magnetic field hold great promise. Among various magnetic nanoparticles, cobalt nanoparticles have attracted much interest due to their strong
  • . In addition to these studies on gold-coated cobalt nanoparticles, there are, to our knowledge, only three reports of gold-coated cobalt (Au@Co) nanochains. Huang and co-workers synthesized bimetallic PtCo and AuCo magnetic nanochains, and showed how the magnetic and electronic properties could be
  • using a wet-chemical method based on a galvanic replacement reaction. Scheme 1 shows that cobalt nanoparticles serve as seed templates over which Au salt is chemically reduced into a shell. By adding Au stock solution to suspensions of the cobalt core solution, and with the assistance of
PDF
Album
Full Research Paper
Published 14 Aug 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
  • inhalation of some ENMs may cause additional adverse outcomes, such as damage to the respiratory tract, inflammation, and activation of signaling pathways. For additional routes of exposure, such as dermal absorption, existing evidence suggests that certain ENMs may penetrate the skin (e.g., cobalt
  • nanoparticles in human volunteers and quantum dots ‘QDs’ in rat skin) and cause irritation (e.g., nano ZnO in zebrafish models) [10]. Oral exposure to ENMs can result in subsequent absorption in the GI tract and organ damage (e.g., nano Cu in mice via oral gavage damaged liver, spleen and kidneys, and nano ZnO
PDF
Album
Supp Info
Review
Published 05 May 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • strong magnetic dipolar interactions during the evaporation of 6 nm cobalt nanoparticles on oriented pyrolytic graphite [19]. Cobalt wires were obtained by the reduction of cobalt salt at high temperatures [20], and discs were produced by applying high temperature in a mixed surfactant system of oleic
  • further to 8–10 nm over 15 min. The size reduction is attributed to etching by TMAH [35], which exposes favorable crystal planes. The (002) plane is possibly exposed because of this etching. Cobalt nanoparticles in the size range of 8–10 nm are superparamagnetic. Magnetic interactions are therefore absent
  • the XPS spectrum shown in Figure S7 (Supporting Information File 1). Oxide formation was inevitable since the analyses required drying or separation of cobalt nanoparticles that might lead to interactions of the surfactant with metal surfaces [46]. Polycrystalline nanorods show a higher value of Ms
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Synthesis of cobalt nanowires in aqueous solution under an external magnetic field

  • Xiaoyu Li,
  • Lijuan Sun,
  • Hu Wang,
  • Kenan Xie,
  • Qin Long,
  • Xuefei Lai and
  • Li Liao

Beilstein J. Nanotechnol. 2016, 7, 990–994, doi:10.3762/bjnano.7.91

Graphical Abstract
  • that applying an external magnetic field could inhibit the growth of the products. During the experimental process, small cobalt nanoparticles were generated in the solution at first, regardless of the presence of the external magnetic field. Then these small nanoparticles agglomerated and formed
PDF
Album
Letter
Published 07 Jul 2016

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • observation: symmetrical conversion mechanism The formation of hollow Kirkendall nanospheres was first reported by Yin et al. in 2004 [7]. They observed the formation of hollow nanospheres while exploring the sulfidation of cobalt nanoparticles by injecting a solution of sulfur in 1,2-dichlorobenzene into hot
  • mechanism is the pioneering work of Yin et al. on the selenization of cobalt nanoparticles [7]. They have shown that the conversion reaction starts by the formation of a very thin cobalt selenide shell on the outer skin of the Co nanoparticle (Figure 3). As the reaction proceeds in time, the Co atoms tend
PDF
Album
Review
Published 18 Jun 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  •  3). A possible explanation might be that those agglomerates geometrically interfere with oocyte–sperm interactions. Interestingly, a study investigating the effect of silver, titatium dioxide and cobalt nanoparticles on sea urchin sperm observed no impact on sperm fertilising capability, but
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • tissue, especially when mild skin barrier disruption by tape stripping techniques was performed additionally [11][12]. Similarly, penetration of cobalt nanoparticles in the size range of 20–500 nm were found both in intact and abraded human skin [26][27][28], while Abdel-Mottaleb et al. confirmed
PDF
Album
Full Research Paper
Published 08 Dec 2014

Improvement of the oxidation stability of cobalt nanoparticles

  • Celin Dobbrow and
  • Annette M. Schmidt

Beilstein J. Nanotechnol. 2012, 3, 75–81, doi:10.3762/bjnano.3.9

Graphical Abstract
  • Celin Dobbrow Annette M. Schmidt Department für Chemie, Universität zu Köln, Luxemburger Str. 116, D-50939 Köln, Germany 10.3762/bjnano.3.9 Abstract In order to enhance the resistance of cobalt nanoparticles to oxidation in air, the impact of different stabilization strategies on the isothermal
  • nanoparticles can effectively be protected against oxidation in order to improve their mid- to longterm stability. Keywords: cobalt nanoparticles; core–shell particles; isothermal oxidation; nanoscale passivation; parabolic rate constant; Findings Magnetic nanoparticles are currently given great attention due
  • -controlled magnetic particle dispersions with strong magnetic properties and a good stability against oxygen and water. With a high saturation magnetization and strong magnetic anisotropy, cobalt nanoparticles in a size range between 10 and 40 nm behave as ferromagnetically blocked, single-domain magnetic
PDF
Album
Supp Info
Letter
Published 30 Jan 2012
Other Beilstein-Institut Open Science Activities